

41st EASD Annual Meeting Athens, Greece, 10-15 September 2005

PS 54 Prediction and prevention of type 2 diabetes I

683

Obesity is a major determinant of the association of C-reactive protein levels with the number of metabolic syndrome components in recently diagnosed, drug-naive type 2 diabetes: the ADOPT study cohort

S. E. Kahn¹, B. Zinman², G. Viberti³, B. G. Kravitz⁴, D. Yu⁴, M. A. Heise⁴, M. I. Freed⁴ and the ADOPT Study Group;

¹University of Washington / VA Puget Sound Health Care System, Seattle, United States, ²Mount Sinai Hospital, Toronto, Canada, ³KCL Guy's Hospital, London, United Kingdom, ⁴GlaxoSmithKline, King of Prussia, United States.

Background and Aims: C-reactive protein (CRP), a marker of systemic inflammation, is associated with long-term cardiovascular morbidity in patients with type 2 diabetes (T2DM) and in non-diabetic patients with the Metabolic Syndrome (MS). Elevated CRP has been found in non-diabetic obese subjects. The purpose of this study was to determine the contribution of body adiposity and glucose control to CRP levels in recently diagnosed (≤3 years), drug-naive, T2DM patients (fasting plasma glucose ≤10mmol/l).

Materials and Methods: We examined a random representative subgroup (n=903) of the US cohort in ADOPT (A Diabetes Outcome Progression Trial). The relationship between baseline variables, National Cholesterol Education Program (NCEP) Adult Treatment Panel III MS phenotype and high-sensitivity CRP (hsCRP) levels was explored.

Results: Geometric mean hsCRP significantly increased with increasing numbers of MS components based on a test for linear trend (P<0.0001; Table). Similarly, BMI (P<0.0001) and HbA_{1c} (P=0.0004) increased with increasing numbers of MS components. Adjustment of CRP levels for body adiposity abolished the association between CRP and the number of MS components (P=0.237; Table), whereas adjustment for HbA_{1c} maintained the association (P<0.0001).

	# NCEP MS Components				
(N)	1	2	3	4	5
	(30)	(94)	(219)	(332)	(228)
hsCRP*, mg/l [†]	1.7	2.4	3.6	4.0	4.7
	(1.1, 2.5)	(1.9, 3.0)	(3.1, 4.2)	(3.6, 4.5)	(4.1, 5.4)
BMI**, kg/m ^{2†}	25.5	29.3	33.1	34.3	36.1
	(23.8, 27.1)	(28.3, 30.3)	(32.5, 33.8)	(33.8, 34.9)	(35.5, 36.7)
BMI-Adjusted CRP*, mg/l [†]	3.2	3.4	3.8	3.8	3.9
	(2.3, 4.7)	(2.8, 4.2)	(3.3, 4.3)	(3.4, 4.2)	(3.5, 4.5)
*Geometric Mean, **Mean, †(95% CI)					

Conclusion: We conclude that CRP, a marker of systemic inflammation, is strongly related to the number of MS components; however, in recently diagnosed, drug-naive T2DM patients this relationship is determined by body adiposity and not by glucose control.